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Abstract. We propose a method for learning discriminative category-
level features and demonstrate state-of-the-art results on large-scale ac-
tion recognition in video. The key observation is that one-vs-rest clas-
sifiers, which are ubiquitously employed for this task, face challenges
in separating very similar categories (such as running vs. jogging). Our
proposed method automatically identifies such pairs of categories using a
criterion of mutual pairwise proximity in the (kernelized) feature space,
using a category-level similarity matrix where each entry corresponds to
the one-vs-one SVM margin for pairs of categories. We then exploit the
observation that while splitting such “Siamese Twin” categories may be
difficult, separating them from the remaining categories in a two-vs-rest
framework is not. This enables us to augment one-vs-rest classifiers with
a judicious selection of “two-vs-rest” classifier outputs, formed from such
discriminative and mutually nearest (DaMN) pairs. By combining one-
vs-rest and two-vs-rest features in a principled probabilistic manner, we
achieve state-of-the-art results on the UCF101 and HMDB51 datasets.
More importantly, the same DaMN features, when treated as a mid-level
representation also outperform existing methods in knowledge transfer
experiments, both cross-dataset from UCF101 to HMDB51 and to new
categories with limited training data (one-shot and few-shot learning).
Finally, we study the generality of the proposed approach by applying
DaMN to other classification tasks; our experiments show that DaMN
outperforms related approaches in direct comparisons, not only on video
action recognition but also on their original image dataset tasks.

1 Introduction

Attributes are mid-level visual concepts, such as “smiling”, “brittle”, or “quick” that
are typically employed to characterize categories at a semantic level. In recent years,
attributes have been successfully applied to a variety of computer vision problems
including face verification [11], image retrieval [30], action recognition [15], image-to-
text generation [1]. Category-level attributes are popular not only because they can
represent the shared semantic properties of visual classes but because they can leverage
information from known categories to enable existing classifiers to generalize to novel
categories for which there exists limited training data.



2 Rui Hou, Amir Roshan Zamir, Rahul Sukthankar, Mubarak Shah

Ideally, attributes should capture human-interpretable semantic characteristics that
can be reliably recognized by machines from visual data. However, the focus on human-
interpretation means that developing attribute classifiers typically demands a labor-
intensive process involving manual selection of attribute labels and collection of suitable
training data by domain experts (e.g., [12]).

Our stance is that while human interpretability of attributes is obviously desirable,
it should be treated as a secondary goal. Thus, we seek fully automated methods that
learn discriminative category-level features to serve as useful mid-level representations,
directly from data.

We propose DaMN, a method for automatically constructing category-level fea-
tures for multi-class problems based on combining one-vs-one, one-vs-rest and two-
vs-rest classifiers in a principled manner. The key intuition behind DaMN is that
similar activities (e.g., jogging vs. running) are often poorly represented by one-vs-rest
classifiers. Rather than requiring methods to accurately split such “Siamese Twin”
categories, we choose to augment one-vs-rest classifiers with a judicious selection of
two-vs-rest classifiers that keep the strongly related categories together. The challenge
is how best to identify such categories and then how to combine information from
the different classifiers in a principled manner. Figure 1 (left) illustrates examples of
category pairs identified as closely related by DaMN; the complete grouping of DaMN
pairs extracted for UCF101 is shown in Figure 1 (right). It is important to note that
the DaMN category pairs are (by construction) similar in kernel space and generally
well separated from the remaining categories. By contrast, the manually constructed
category-attribute matrix for UCF101 is not as amenable to machine classification de-
spite having human-interpretable names [14]. Such experiences drive us to explore the
idea of data-driven category features as an alternative to human selected attributes,
with the hope that such features can still offer the benefits (such as cross-dataset
generalization and one-shot learning) of traditional attributes.

We are not the first to propose such a data-driven approach. For instance, Farhadi
et al. suggested searching for attributes by examining random splits of the data [5] and
Bergamo & Torresani recently proposed Meta-class [2], an approach for identifying
related image categories based on misclassification errors on a validation set. Although
we are the first to apply such approaches for video action recognition, we do not claim
this as a significant contribution of our work.

More importantly, our experiments on UCF101 and HMDB51 confirm that these
automatically learned features significantly improve classification performance and are
also effective vehicles for knowledge transfer to novel categories.

Our paper’s contributions can be summarized as follows.

1. We propose a novel, general-purpose, fully automated algorithm that generates dis-
criminative category-level features directly from data. Unlike earlier work, DaMN
trains from all of the available data (no random test/train splits nor validation
sets).

2. We evaluate DaMN on large-scale video action recognition tasks and show that: a)
the proposed category-level features outperform the manually generated category-
level attributes provided in the UCF101 dataset; b) DaMN is a strong choice for a
mid-level action representation, enabling us to obtain the highest-reported results
on the UCF101 dataset.

3. We show that DaMN outperforms existing methods on knowledge transfer, both
across dataset and to novel categories with limited training data.
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Fig. 1. Left: Examples of DaMN category pairs automatically discovered in UCF101.
For the actions shown on the left, three sample mutually nearest categories are shown
on the right. Explicitly representing such category-level information enables improved
action recognition accuracy. Right: Visualization of the extracted pairwise category
similarity (Section 3.1) for UCF101. To manage visual clutter, only the first 43 cate-
gories are shown, with edges shaded according to the pairwise similarity between the
respective classes. We see that DaMN identifies meaningful semantic groups, such as
weightlifting, bat-and-ball sports, and face-centered actions. Also note the presence of
singleton categories.

4. While our focus is on video action recognition, the proposed method can also be
applied to other problems and we show DaMN’s superiority on the Animals-with-
Attributes [12] dataset.

The remainder of the paper is structured as follows. Section 2 presents an overview of
related work. Section 3 details the proposed method of generating DaMN category-level
features. Section 4 describes video action recognition experiments on UCF101, knowl-
edge transfer to HMDB51, one-shot learning and a study on semantic attributes vs.
data driven category-level features. We also present results on image datasets, consider
extensions beyond second-order relationships and provide a brief analysis of DaMN'’s
computational complexity. Section 5 concludes and outlines promising directions for
future work.

2 Related Work

This section reviews a representative subset of the related work in this area and details
the key differences between the proposed approach and current efforts to directly learn
discriminative attributes or category-level features from data.

2.1 Semantic Attributes

The majority of research on attributes focuses on how semantic attributes can better
solve a diverse set of computer vision problems [1,4,8,11,15,30] or enable new appli-
cations [12,19]. Generally, specifying these semantic attributes and generating suitable
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datasets from which to learn attribute classifiers is a difficult task that requires consid-
erable effort and domain expertise. For instance, the popular animals-with-attributes
dataset provided by Lampert et al. [12] relied upon a category/attribute matrix that
was originally created by domain experts in the cognitive science [18] and Al [9] com-
munities.

Traditionally, semantic attributes are constructed by manually selecting a set of
terms that characterize the concept [15,28]. An important line of work has explored
ways to alleviate this human burden. Berg et al. [1] propose to automatically discover
attributes by mining text and images on the web. Ferrari and Zisserman [7] learn
attributes such as “striped” and “spotted” in a weakly supervised scheme from unseg-
mented images. Parikh and Grauman [20] propose an interactive scheme that efficiently
uses annotator feedback.

While all these methods generate human-interpretable semantic attributes, our ex-
periments motivate us to question whether semantic attributes are necessarily superior
to those learned directly from low-level features. The recently released large-scale ac-
tion recognition dataset, UCF101 [22] has been augmented by a set of category-level
attributes, generated using human rater judgments, for the ICCV’13 THUMOS contest
on Action Recognition [14]. Section 4 discusses that even though the THUMOS seman-
tic attributes encode an additional source of information from human raters, they are
significantly outperformed by the automatically learned DaMN features.

2.2 Data-driven Category-Level Features

Category-level features (sometimes termed data-driven attributes) are mid-level repre-
sentations that are typically learned from low-level features without manual supervi-
sion. Their main drawbacks are that: 1) the distinctions found in the feature space may
not correspond in any obvious way to a semantic difference that is visible to humans;
2) unlike the attributes described in Section 2.1, which incorporate additional domain
knowledge from human raters, it is unclear whether data-driven features should be
expected to glean anything from the low-level features that a state-of-the-art classifier
employing the same features would fail to extract.

Farhadi et al. [5] discover promising attributes by considering large numbers of
random splits of the data. Wang & Mori [26] propose a discriminatively trained joint
model for categories and their visual attributes in images. Liu et al. [16] combine a
set of manually specified attributes with data-driven attributes for action recognition.
Yang and Shah [27] propose the use of data-driven concepts for event detection in
video. Mensink et al. [17] propose an efficient method for generalizing to new categories
in image classification by extending the nearest class mean (NCM) classifier that is
reminiscent of category-level features. Our work is related to that of Yu et al. [29], which
independently proposes a principled approach to learning category-level attributes from
data by formulating the similarity between two categories based on one-vs-one SVM
margins. However, DaMN differs from [29] in several key respects. First, our features
are real-valued while theirs (like most attributes in previous work) are binary. Second,
our method centers on identifying pairs of strongly-connected categories (mutual near
neighbors) while theirs is set up as a Rayleigh quotient optimization problem and solved
using a greedy algorithm. Third, their application is in image classification while we are
primarily interested in action recognition with a large number of classes. Nonetheless,
we show in direct comparisons that DaMN outperforms [29] using their experimental
methodology on image datasets.
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At a high level, the work most closely related to DaMN is Bergamo & Torresani’s
Meta-Class features, which also seek to group categories in a data-driven manner in
order to improve upon one-vs-rest classifiers. The fundamental difference is in how
the two algorithms determine which categories to group: meta-class trains an aux-
iliary SVM classifier and treats the classification error (computed over a validation
set) as a proxy for the similarity between two categories. By contrast, DaMN directly
formulates principled measures for this category-level distance, such as the pairwise
(one-vs-one) SVM margin. The latter is an improvement both in terms of theory and
is experimentally validated in direct comparisons on several datasets.

2.3 Knowledge Transfer

Category-level features and attributes are well suited to vision tasks that require trained
classifiers to generalize to novel categories for which there exists limited training data.
This is because an classifier trained to recognize an attribute such as “furry” from cats
and dogs is likely to generalize to recognizing other furry mammals. Attribute-driven
knowledge transfer has been successfully demonstrated both in the one-shot [12] and
zero-shot [19, 21] context. In the action recognition domain, Liu et al. [15] explore
attribute-driven generalization for novel actions using manually specified action at-
tributes.

Our approach for generalizing to novel categories is purely data-driven. At a high
level, our approach to one-shot learning is related to the use of one-vs-rest classifiers or
classemes [23] by which novel categories can be described; DaMN features can be viewed
as augmenting one-vs-rest with the most useful subset of potential two-categories-vs-
rest classifiers. Our experiments (Section 4) confirm that our DaMN category-level
features are significantly superior to existing approaches in both cross-dataset and
novel category generalization scenarios.

3 Proposed Approach: DaMN

Figure 2 (right) provides a visual overview of the DaMN process, detailed further in this
section. Action recognition in video is typically formulated as a classification problem
where the goal is to assign a category label y € Y to each video clip v € V. Although
our proposed method also works with more complex feature families, let us simplify the
following discussion by assuming that the given video v is represented by some feature
x, € R%,

Let n = |Y| denote the number of categories and F the set of category-level features
that describe how categories are related. The size of this set, m = |F|; m = n in the
case of one-vs-rest classifiers, and m > n for DaMN — with the number of two-vs-rest
classifiers given by m — n. In general, the category-level relationships can be expressed
by a binary-valued matrix B € B"*™. The ith row of B contains the features for
category y; while the jth column of the matrix denotes the categories that share a
given category-level feature. Each column is associated with a classifier, f;(xy) (such
as a kernel SVM), trained either one-vs-rest or two-vs-rest, that operates on a given
instance (video clip) v.

Our goal is to automatically identify the set of suitable features F, train their
associated classifiers f(.) using the available training data and use the instance-level
predictions to classify novel videos. In the additional task of one-shot learning, we use
the same category-level features with an expanded set of categories, ), for each of
which we are given only a single exemplar.
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Fig. 2. Left: Illustration of different category-level distance metrics. The illustration
uses a linear kernel only to simplify visualization; all of these, except for centroid, are
actually performed in kernel space. Right: Overview of the DaMN Learning/Prediction
Process.

PY Centroid
| | SVM Margin

3.1 Pairwise Category Similarity

We train one-vs-one SVM classifiers for every pair of categories to compute the category-
level similarity. We propose a natural generalization from the instance-level similarity,
typically expressed through some kernel function K(.,.) that compares their respective
low-level feature representation (e.g., using x? for bag-of-words features) typically used
in action recognition to category-level similarity as the margin of a one-vs-one SVM
trained to discriminate the two categories, expressed in the dual form as

dy; y; = Z O‘Po‘q(_l)l[c(p)#c(q)]K(XpaXq) (1)

V(p,q)€yiVy;

where p and ¢ are all pairs of instances from the union of the two categories, a their
non-negative weights (> 0 only for support vectors), ¢(.) is a function that returns the
category of the given instance and I[.] denotes the indicator function whose value is
1 when its argument is true and 0 otherwise. Figure 1 (right) visualizes the similarity
values computed using this metric for UCF101; to manage visual clutter, we show only
the first 43 categories, with edges shaded according to the pairwise similarity between
respective categories. Note that even though there are (g) such classifiers, they are
quick to train since each classifier uses only a tiny subset of the training data — a fact
exploited by one-vs-one multi-class SVMs.

Given similarities between categories (at the feature level), we seek to identify pairs
of categories that are close. For this, we construct a mutual k-nearest neighbor (KNN)
graph over categories. A mutual kNN graph is similar to the popular kNN graph except
that nodes p and ¢ are connected if and only if p lists ¢ as among its k closest neighbors
and ¢ also lists p among its k closest neighbors. Let G = (V, E) be a graph with n
nodes, V, corresponding to the category labels y and weights given by:

0 yp and y, are not mutual ANN,
Wpq = { d " ! (2)

ypyq  Otherwise.

Unlike a k-nearest neighbor graph, where every node has degree k, a mutual kNN graph
exhibits much sparser connectivity.
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3.2 Constructing the DaMN Category-Level Feature Matrix

The DaMN category-level feature matrix is composed of two parts: 1) features to
separate each category individually (identical to one-vs-rest); 2) pair classifiers designed
to separate mutually proximate pairs of categories from the remaining classes. Among
the (;) possible category pairs, DaMN selects only those that are mutually proximate
(wpq > 0) as additional features.

Thus, B is an n X m matrix composed of two portions: an n X n identity ma-
trix corresponding to the one-vs-rest classifiers augmented by additional columns for
the selected category pairs. Each of the additional columns ¢ in the second block is
associated with a category pair (p,q) and the entries of the new column are given by:

o _J1 ifi=pori=gq
Bic = {0 otherwise. 3)

3.3 Training Category-Level Feature Classifiers

Each column in B defines a partition over labels that is used to split the training set
into positives (those instances whose labels possess the given feature) and negatives
(instances lacking the feature). We learn a x? kernel SVM using this data split to
predict the new feature.

Since the first n columns of B have a single non-zero entry, they correspond to
training regular one-vs-rest SVMs. The remaining m — n columns have two non-zero
entries and require training a set of somewhat unusual two-category-vs-rest SVMs to
separate similar category pairs from the other classes.

3.4 Predicting Categories

Given a video v from the test set, we extract its low-level features x, and pass it through
the trained bank of DaMN classifiers, both one-vs-rest and two-vs-rest. We also have
a set of one-vs-one classifiers to distinguish between the two categories in one DaMN
pair. For the given video v, let P(y;) denote the probabilistic score returned by the
one-vs-rest classifier of category y;, and P(y; @ y;) represent the score computed by the
two-vs-rest classifier of the DaMN pair (y;,y;). Also, let P(y;|y; @ y;) denote the score
returned by the one-vs-one classifier which distinguishes between the categories y; and
y;. All of the SVM classifier scores are Platt-scaled to provide probabilistic values.

We now compute a score that quantifies the match between v and each candidate
category y; by combining the traditional one-vs-rest score with those two-vs-rest scores
that involve y;, weighted by a one-vs-one classifier between y; and the other class in
the DaMN pair. All of these individual probabilities are then combined to obtain the
final score for category y;:

P + 2, ) epanny P @ 5) X Plysly: @ y;) @

c=1 Pic

The argument of the summation in the numerator is equivalent to the following prob-
abilistic rule for finding the probability of event a: P(a) = P(a Ub) x P(ala U b).
The set {j : (ys,y;) € DaMN} represents the DaMN pairs that involve the category y;.
Since there are several of such pairs, the score T}, is defined as the mean of the scores
acquired from all of those pairs as well as the score of the one-vs-rest classifier (i.e.,
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P(y;)). Therefore, the denominator of Eq. 4 is equal to the total number of DaMN
pairs that involve category y; plus one (to count for its one-vs-rest classifier).

Since, as seen in Figure 1 (right), some categories participate in many more DaMN
pairs than others, the final score for such categories involves more terms. At the other
extreme are categories that do not show up in any DaMN pair, for which only the one-
vs-rest score is used; this situation corresponds to a highly distinctive category, which
is easily discriminated from others (as evidenced by a high margin in kernel space). An
intuitive illustration is that when computing a score for v with respect to the category
running, we should focus on DaMN features generated by pairs like jogging-running or
walking-running rather than those seeded by makeup-shaving.

Finally, we assign the test video to the category with the highest match score:

G — 7). 5
§ = argmax (T,) (®)

3.5 Knowledge Transfer to Novel Categories

This section details how DaMN features enable generalization to novel categories
through knowledge transfer. Consider the scenario where m features have been gen-
erated using abundant training data from n categories, resulting in an m x n binary
matrix and an n X n adjacency matrix describing the weighted mutual kNN graph. We
are now presented with n’ novel categories, each containing only a few instances. The
goal is to classify instances in the test set generated from all n + n’ categories (both
existing and novel).

We proceed as follows. First, for each new label 3, we determine its similarity to
the known categories ) using the small amount of new data and Equation 1. Note that
while the data from novel categories may be insufficient to enable accurate training of
one-vs-rest classifiers, it is sufficient to provide a rough estimate of similarity between
the new category and existing categories. From such rough estimate, we determine the
k categories that are most similar to ¢’ and synthesize a new row for the matrix B for
the novel category from the rows of similar categories:

Byj= Y. By, (6)

yEkENN(y’)

where Y is treated as the OR operator since B is a binary-valued matrix and ANN(.)
returns the k categories most similar to the novel category.

At test time, we obtain scores from the bank of existing DaMN feature classifiers
and determine the most likely category using Equations 4 and 5. Note that for the
novel categories, Equation 4 employs the synthesized values in the matrix.

4 Experiments

Our experimental methodology focuses on clarity, thoroughness and reproducibility
rather than tuning our system to squeeze the best possible results. Even under these
conditions, as detailed below, DaMN generates the best classification results to date
on both the UCF101 and HMDB51 datasets.

All of our experiments are conducted on the two latest publicly available action
recognition datasets, UCF101 [22] and HMDB51 [10], which contain YouTube videos
from 101 and 51 categories, respectively. For UCF101 experiments, we closely follow the
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Fig. 3. Left: DaMN is tuned using a single hyper-parameter, k. Accuracy on UCF101
with DTF (late fusion) as k is varied. DaMN outperforms the strongest baseline for
k>15 and even at its worst, DaMN outperforms all remaining methods. Right: His-
togram showing the fraction of classifiers that achieve a given AP on UCF101. DaMN
features can be detected more reliably than the manually prescribed attributes provided
by THUMOS.

protocol specified in the ICCV’13 THUMOS action recognition challenge [14], for which
test/train splits, manually generated category-level semantic attributes and baseline
results are provided.

We restrict ourselves to low-level features for which open source code is available,
and select the Dense Trajectory Features (DTF) [25] and Improved Dense Trajectory
Features (I-DTF) [24] based on their state-of-the-art results reported in recent com-
petitions. DTF consists of four descriptors: histogram-of-gradients (HOG), histogram-
of-flow (HOF), motion-based histograms (MBH) and trajectories. The descriptors are
traditionally combined using early fusion (concatenation) but we also present results
using the individual component descriptors and late fusion (using equally weighted
combination of SVMs). For each descriptor, we generate a 4000-word codebook and
build a standard bag-of-words representation for each video by aggregating bin counts
over the entire clip.

For classification, we employ the popular LIBSVM [3] implementation of support
vector machines with C=1 and the x? kernel, since our features are histograms. Because
DaMN already employs one-vs-one SVMs for determining category proximity, results
from multi-class one-vs-one SVMs serve as a natural baseline. Following Yu et al. [29],
we also train 101 one-vs-rest SVM classifiers to serve as a stronger baseline.!

Implementing DaMN is straightforward, but we provide open-source code to enable
the research community to easily duplicate our experiments and to employ DaMN in
other domains.

! Others (e.g., the majority of the submissions to ICCV’13 THUMOS Challenge [14])
report that one-vs-rest SVMs consistently outperform multi-class one-vs-one SVMs
for reasons that are not clearly understood; an observation that merits further study.
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4.1 Action Recognition on UCF101 and HMDB51

All DaMN category-level features for UCF101 were generated with the single hyper-
parameter k=35 (see below for experiments showing sensitivity to choice of k). Fol-
lowing the ICCV’13 THUMOS [14] protocol, we present results averaged over the 3
provided folds. The small number next to the mean accuracy in the tables is the
standard deviation of the accuracy over the 3 folds. Table 1 summarizes the action
recognition results. We present direct comparisons against a variety of baselines as well
as DaMN’s competitors, one-vs-rest and meta-class. Meta-class requires a validation
set and cannot train on all of the available data; to eliminate the possibility that DaMN
performs better solely due to the additional data, we provide additional rows (denoted
DaMN~™ and one-vs-rest~) where these algorithms were trained on a reduced dataset
(instances in the validation set used by Meta-class are simply discarded). We also pro-
vide two baselines from the THUMOS contest: 1) the THUMOS contest baseline using
STIP [13] + bag-of-words + x? kernel SVM, and 2) a baseline computed using the
manually generated THUMOS semantic attributes for UCF101. For the latter base-
line, we employ the same methodology as DaMN to ensure a fair direct comparison.
We make the following observations.

First, we note that switching from STIP to DTF features alone generates a large
improvement over the THUMOS baseline and combining DTF components using late
fusion (LF) is generally better than with the early fusion (EF) originally employed by
the DTF authors. These are consistent with the results reported by many groups at
the ICCV THUMOS workshop and are not claimed as a contribution. We simply note
that STIP features are no longer a strong baseline for future work in this area.

Second, we observe that the manually generated THUMOS semantic features are
outperformed by all of the methods. This drives a more detailed investigation (see
Section 4.2).

Third, we note that the DaMN features in conjunction with any of the component
features (either individual of fused) provides a consistent boost over both one-vs-rest
or meta-class, regardless of experimental condition. In particular, DaMN outperforms
meta-class even after discarding a portion of the data (which meta-class employs for
estimating category-level similarity). Interestingly, meta-class outperforms one-vs-rest
only when one-vs-rest is not given access to the full data (one-vs-rest™); this demon-
strates that, unlike DaMN, meta-class makes inefficient use of the available data and is
not a recommended technique unless there is an abundance of training data. This ad-
ditional training data boosts DaMN’s accuracy by a further 6% in the late-fused DTF
condition (DaMN vs. DaMN ™), which convincingly shows the benefits of the proposed
approach over previous methods.

As discussed in Section 3, DaMN only employs a single hyper-parameter. Fig-
ure 3 (left) shows how UCF101 classification accuracy varies with k£ using the DTF
features (late fusion). We observe that DaMN is better than the strongest baseline
after k=15 and peaks on UCF101 around k=35. Even the worst instance of DaMN
(k=5) is better than all of the remaining methods.

Table 2 shows action recognition results on HMDB51 using its standard splits [10].
The selected parameters for DaMN and the baselines for this dataset were the same as
for UCF101. DaMN achieves state-of-the-art results on HMDB51, outperforming the
recent results [24] that employ one-vs-rest SVM on Improved DTF features.
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Table 1. UCF101 Results. DaMN consistently boosts results across all features. DaMN
achieves the best reported results on UCF101 using I-DTF.

-DTF [24][DTF (LF)[DTF (EF)] MBH | HOG HOF Traj.
DaMN 87.00+1.1 |78.33+1.7|75.93+1.8(73.25+1.3|57.60+0.6|/57.42+2.1|55.18+1.6
1-vs-rest 85.90+1.2 | 75.88+2.4 | 74.60+2.5 | 71.32+2.9|56.94+2.3 | 56.08+3.1 | 53.72+1.6
1-vs-1 79.12+1.9 | 69.25+3.3 | 68.32+3.6 | 66.00+2.4 | 51.40+3.2 | 51.80+2.3 | 48.63+1.1
DaMN™ 80.03+0.4 |71.82+1.4|70.04+1.5(66.73+1.1|51.63+0.7|149.83+1.9|/49.74+1.5
Meta-class|| 78.65+0.6 | 69.71+1.8 | 68.32+1.4 | 60.07+2.3|44.15+2.6 | 44.98+0.8 | 43.91+1.0
1-vs-rest™ || 78.54+0.6 | 67.84+1.9 | 66.91+2.1 | 62.34+2.2 | 43.71+1.6 | 44.93+1.4 | 43.71+1.3
Semantic 58.99 50.19 49.73 51.56 32.68 43.77 33.85
THUMOS [14] baseline (STIP + BOW + x? SVM): 43.9%

Table 2. HMDB51 Results. DaMN achieves the best reported results on this dataset.

DaMN  1-vs-rest Meta-class
I-DTF 57.88+0.46 57.01+1.44 57.36+0.24

4.2 DaMN vs. THUMOS semantic attributes

To be of practical use, attributes need to be semantic as well as machine-detectable.
The THUMOS attributes clearly capture the first criterion, since they were developed
by human raters. However, since they are category-level there is a danger that the
attributes envisioned by the raters may not actually be visible (or reliably detectable)
in a given instance from that category.

The accuracy of an attribute classifier captures the reliability with which the given
attribute can be recognized in data. Figure 3 (right) plots histograms of accuracy for
THUMOS and DaMN classifiers and Table 3 (left) summarizes some key statistics.

Table 4 examines a natural question: how do different choices for the category-
level distances illustrated in Figure 2 (left) impact DaMN’s performance? We briefly
describe the choices. Given the set of distances {d;; : © € I,j € J} for kernel distances
between instances in categories I and J, linkage is defined as the minimum distance;
median is the median distance between pairs; average is the mean over the distances in
this set; and centroid is the distance between the centroids of each category (in feature
space). SVM Margin is the margin for an one-vs-one SVM trained on instances from
each category. We see that the SVM Margin is better for almost all features, is robust
to outliers and is thus the default choice for DaMN in this paper.

We observe that the DaMN classifiers are more reliable than the THUMOS ones.
The DaMN features were designed to identify pairs of categories that are mutually
close (i.e., share an attribute) and to separate them from the remaining categories.
As confirmed by these statistics, such a data-driven strategy enables very accurate
recognition of attributes. Fortuitously, as shown in Figures 1 (left) and 1 (right), the
selected pairs are also usually (but not always) meaningful to humans. Our results
confirm that any price that we may pay in terms of human interpretability is more
than offset by the gains we observe in recognition accuracy, both at the attribute and
the category level.
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Table 3. Left: Performance vs. THUMOS semantic attributes. Right: Marginal ben-
efits obtained by adding three-vs-rest classifiers to DaMN.

mAP StD Min Max DTF (LF) DTF (EF) MBH HOG HOF Traj.
THUMOS 0.53 0.19 0.07 99.08 pairs  78.33 75.93  73.25 57.60 57.42 55.18
DaMN  0.64 0.18 0.12 95.74 triples  77.88 76.30 73.04 57.51 57.20 55.28

Table 4. Empirical evaluation of different category-level distance metrics (in the fea-
ture space projected using x? kernel).

DTF (LF)| MBH HOG HOF Traj.
SVM Margin ||78.33+1.7(73.25+1.3|57.60+0.6| 57.42+2.1 [55.18+1.6

Average 77.59+1.6 | 72.84+1.7 | 57.41+0.8 | 57.20+1.6 | 53.82+0.7
Linkage (Min)|| 77.38+1.8 | 72.66+1.1 | 57.12+0.3 | 57.05+1.8 | 55.03+1.4
Median T7.79+1.7 | 72.97+1.5 | 57.49+0.8 |57.50+1.7| 54.81+1.7
Centroid 77.2241.9 | 72.64+1.5 | 57.49+0.8 | 57.0042.0 | 54.60+1.6

In the remaining experiments, we evaluate how well DaMN enables knowledge
transfer, both within and across datasets.

4.3 Cross-Dataset Generalization to HMDB51

The focus of this experiment is to see how well the DaMN category-level features
learned on UCF101 enable us to perform action recognition on a subset of 12 HMDB51
categories with no additional training. Since the category names are different and
UCF101 categories more fine-grained, we roughly align them as shown in Table 5.

We follow the same experimental settings as in Section 4.1 but use just the MBH
feature rather than late fusion for simplicity. We perform experiments using 3-fold
cross-validation, with each run training on two folds of UCF101 and testing on the
third fold of HMDB51. Table 5 shows results averaged over these three folds. We see
that DaMN achieves an overall higher accuracy than both one-vs-rest and meta-class
on cross-dataset generalization.

4.4 Generalization Performance with Limited Training Data

A popular use for attributes and category-level features is that they enable generaliza-
tion to novel classes for which we have small amounts of training data; an extreme case
of this is one-shot learning, where only a single exemplar is provided for each novel
category [6].

For this experiment, we randomly select 10 categories to serve as “novel” and treat
the remaining 91 as “known”. Results are averaged on the three folds specified by
THUMOS. We learn DaMN features (k=30) and train semantic and classeme (one-
vs-rest) classifiers using the data from two folds of the known classes; we test on the
entire third fold of the novel categories. As in cross-dataset scenario, all classifiers use
the MBH feature rather than late fusion for simplicity.

We vary the number of training instances per novel category from 1 to 18, while
ensuring that all three methods are given identical data. Figure 4 (left) summarizes the
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Table 5. Cross-Dataset Generalization: UCF101 — HMDB51

HMDB51 label UCF101 IDs DaMN  1-vs-rest Meta-class

Brush hair 13 57.78 40.00 54.44
Climb 74 & 75 74.44 83.33 75.56
Dive 26 77.78 57.78 70.00
Golf 33 66.67  66.67 68.89
Handstand 30 43.33 45.56 41.11
Pullup 70 58.89 68.89 56.67
Punch 17 & 18 81.11 80.00 72.22
Pushup 72 62.22 56.67 54.44
Ride bike 11 72.22 73.33 67.78
Shoot ball 8 22.22 25.56 30.00
Shoot bow 3 38.89 36.67 43.33
Throw 7 57.78  57.78 54.44
Average 59.44+0.7 57.6940.8 54.44+1.1

results (averaged over three folds). As in the UCF101 action recognition experiments
(Section 4.1), the semantic attributes perform very poorly and DaMN does the best,
outperforming both meta-class and one-vs-rest in every trial.

The difference between DaMN and the next best is much greater in this experiment,
often more than 20%. This demonstrates that the information captured in DaMN
generalizes much better across classes.

4.5 Extending DaMN to Image Datasets

Although DaMN was primarily developed for applications in action recognition, we
recognize that the algorithm can be applied to any classification task. In order to
demonstrate the generality of our method, we present a direct comparison against Yu
et al.’s recently published method [29] for eliciting category-level attributes on the
Animals with Attributes images dataset [12].

Figure 4 (right) shows the accuracy of DaMN, one-vs-rest and Yu et al. [29] using
the experimental methodology and data splits prescribed in [29]. We see that one-vs-
rest and Yu et al. perform similarly, but both are consistently outperformed by DaMN.

4.6 Extending DaMN Beyond Pairs

Just as DaMN improves over one-vs-rest by judiciously mining suitable two-vs-rest
classifiers, it is natural to explore whether one can obtain additional benefits by con-
sidering higher-level information, such as cliques consisting of 3 (or more) mutually
near categories. Table 3 (right) shows that the improvements are marginal. We believe
that this is due to several reasons: 1) there are relatively few such higher-order category
groupings; 2) many of the relationships are already captured by the DaMN features
since a triplet of similar categories also generates three two-vs-rest pairs; 3) the addi-
tional complexity of discriminating within the higher-order grouping of categories may
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Fig. 4. Left: Knowledge transfer to novel categories with limited data (1 to 18 instances
per category). DaMN consistently outperforms one-vs-rest, meta-class and THUMOS
semantic attributes. Right: Generalization of DaMN to image datasets. DaMN out-
performs one-vs-rest and Yu et al. [29] on the Animals with Attributes dataset.

not be merited, whereas the one-vs-one classifiers used to differentiate within the pair
were already trained during the DaMN pair selection process. For these reasons, we do
not extend DaMN beyond pair categories.

4.7 Computational Complexity

While DaMN may seem to be prohibitively more expensive in terms of computation
than the popular one-vs-rest classifiers employed in the action recognition community,
we show that training these additional classifiers is both computationally manageable
and worthwhile since they generate such consistent (if small) improvements in mAP and
classification accuracy. In the interests of space, we briefly summarize wall-clock times
for the UCF-101 experiments. Total time for one-vs-one SVM training: 10.14s; one-vs-
one SVM testing: 1682.72s; total one-vs-rest and two-vs-rest SVM training: 2752.74s;
one-vs-rest and two-vs-rest testing: 2546.51s. For each descriptor type in DTF, DaMN
employs ~800 one-vs-one SVMs, ~800 two-vs-rest SVMs and 101 one-vs-rest SVMs.
Training time for the two-vs-rest classifiers is similar to the one-vs-rest since they have
the same number of training instances, but with different labels.

5 Conclusion

We present a novel method for learning mid-level features in a discriminative, data-
driven manner and evaluate on large-scale action recognition datasets. The DaMN
features are selected on the basis of category-level mutual pairwise similarity and are
shown to convincingly outperform existing approaches, both semantic as well as data-
driven on a broad set of tasks.

The natural direction for future work is exploring how our category-level features
can apply to problems outside action recognition (and possibly beyond computer vi-
sion). We believe that the image classification experiments where DaMN outperform
recent approaches are a promising sign in this direction. We hope that our open source
implementation encourages the community to use the DaMN approach on new tasks.
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