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Abstract. Geographical Information System (GIS) databases contain
information about many objects, such as traffic signals, road signs, fire
hydrants, etc. in urban areas. This wealth of information can be utilized
for assisting various computer vision tasks. In this paper, we propose
a method for improving object detection using a set of priors acquired
from GIS databases. Given a database of object locations from GIS and a
query image with metadata, we compute the expected spatial location of
the visible objects in the image. We also perform object detection in the
query image (e.g., using DPM) and obtain a set of candidate bounding
boxes for the objects. Then, we fuse the GIS priors with the potential
detections to find the final object bounding boxes. To cope with various
inaccuracies and practical complications, such as noisy metadata, occlu-
sion, inaccuracies in GIS, and poor candidate detections, we formulate
our fusion as a higher-order graph matching problem which we robustly
solve using RANSAC. We demonstrate that this approach outperforms
well established object detectors, such as DPM, with a large margin.

Furthermore, we propose that the GIS objects can be used as cues for
discovering the location where an image was taken. Our hypothesis is
based on the idea that the objects visible in one image, along with their
relative spatial location, provide distinctive cues for the geo-location.
In order to estimate the geo-location based on the generic objects, we
perform a search on a dense grid of locations over the covered area.
We assign a score to each location based on the similarity of its GIS
objects and the imperfect object detections in the image. We demonstrate
that over a broad urban area of >10 square kilometers, this semantic
approach can significantly narrow down the localization search space,
and occasionally, even find the correct location.

1 Introduction

Currently, the accurate locations of many static objects in urban areas, e.g.,
bus stops, road signs, fire hydrants, ATMs, subway stations, building outlines,
and even trees, are documented in databases, commonly known as GIS. Such
databases provide valuable semantically meaningful information, and their cov-
erage and accuracy is constantly increasing. Therefore, it is natural to develop
computer vision systems which can effectively leverage this information.

http://crcv.ucf.edu/projects/GIS-Object/
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In this context, we propose a method for improving object detection in im-
ages of outdoor urban scenes using GIS. The metadata of images are commonly
available with the image in Exif tags. Using the GIS databases and the meta-
data, we project the GIS objects onto the image and use them as priors for object
detection. However, a slight inaccuracy in the metadata or the GIS database,
which is quite common, leads to completely misplaced projections which makes
fusing them with the image content challenging. We resolve this issue by formu-
lating our object detection problem as a higher-order graph matching instance
which we solve using robust estimation techniques.

Furthermore, in the same context, we extend the use of GIS to even the cases
with unknown camera locations and show that the objects in the image and their
relative spatial relationship can be used for finding the GPS location where an
image was taken. As an example, assume a traffic signal, a bus stop, and a trash
can are visible in an image. At a city scale, this information would narrow down
the feasible geo-locations for this image to some extent if the geo-locations of all
traffic signals, bus stops, trash cans are known. Now, assume it is known that
the trash can is toward the north of the traffic signal and the bus stop is to
their east. One would imagine that there will not exist many locations in the
city consistent with this arrangement, even though the objects are generic and
common. We will show that, interestingly, the geometric relationship between
these generic objects in fact provides distinctive cues for discovering the location
of an image. However, the inaccuracies in GIS and the imperfect performance of
state-of-the-art-object detectors are some of the critical issue which we address
in our framework by employing a robust matching method.

GIS has been used for various applications in computer vision [21,22], in
particular registration of aerial images based on semantic segments. As another
example, Matzen et al. [14] use geographic and geometric information for detect-
ing vehicles using a set of viewpoint-aware detectors. However, the majority of
existing image geo-localization techniques do not leverage any type of semantic
information, e.g., semantic objects. They are often based on establishing low-
level feature correspondences, e.g., SIFT [13] or BoVW histograms, between the
query image and a reference dataset of images. Several methods which adopt
this approach for Street view[24,18,9,25], satellite or Birdseye view [1,12], or
crowdsourced images [17,16,11,23] have been developed to date. Several other
methods for identifying landmarks in images, e.g., [3], have been proposed which
to some extent leverage the location-level semantic information (i.e., the land-
marks). Recently, Shafique et al. [15] developed a system for coarse geographical
information estimation from an image based the annotations provided by the
user. Lee et al. [10] proposed a method for discovering a set of “visual styles”
which can be linked to historical and geographical information. Bioret et al. [2]
localized images based on matching them to building outlines. Even though some
of the aforementioned methods leverage high-level information to some extent,
in general, very little work towards rigorous integration of semantic information
in the geo-localization process has been reported to date.
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In the context of object detection, several techniques for assisting the process
of detection using various type of prior context have been proposed [4,19,20]. For
instance, Hoiem et al. [8] proposed a method for utilizing a set of general spatial
priors for improving object detection (unlike our approach which uses location-
specific priors and a graph matching formulation). However, the use of large
scale and detailed GIS databases available for urban area has not been explored
to date. This paper provides the first method for unifying wide area image local-
ization and object detection in one robust framework which is centered around
semantically tangible information.

2 GIS-Assisted Object Detection

Given the metadata, we gather a set of priors about the objects that are poten-
tially in the field of view of the camera. Since some of them might be occluded
by buildings or other objects, we perform occlusion handling to find a set of
objects which are expected to be visible in the image. In addition, we perform
object detection in the image to have some candidate bounding boxes using the
content of the image. Then we fuse these two utilizing graph matching in order
to find the final object detections.

2.1 Obtaining Priors From GIS

We want to extract a set of priors about the spatial locations of the objects
in the image. We extract the metadata (e.g., the camera location, focal length,
camera model (yielding the sensor size), and possibly compass direction) from
the Exif tag of the images and use it for forming the camera matrix, C, which
maps the 3D world coordinates to the 2D image coordinates. Camera matrix
has the standard form of P = C[R | T ], where R, T , and C are the rotation,
translation, and calibration matrices, respectively. Using the information in the
Exif tag, C can be obtained using the following equation:

C =

f × sx ly/2 0
0 1 0
0 lx/2 f × sy

, (1)

where f is the focal length of the camera, sx and sy are the sensor size and lx
and ly are the number of pixels is x and y coordinates of the image. We assume
a fixed height for the camera (1.7m) and also zero roll and pitch as they are
not recorded in the Exif tag (we will later see that graph matching will handle
the shift caused by this approximation), but yaw is recorded by the compass.
Therefore, R and T can be formed employing these approximations and the
geo-location and compass information recorded in the Exif tag. The following
equation yields the homogeneous coordinates of the projections of GIS objects
in the image: [

xi
1

]
= PXi, (2)
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where Xi denotes the 3D GPS coordinates1 of the ith object in the GIS database
which is in the field of view of the camera, and xi represents an estimation of
the two dimensional spatial location of the ith object in the image plane.

In GIS, each object is represented by a single GPS location. However, the
typical height of the objects, such as fire hydrants or bus stops, are known and
often fixed. Thus, We assume fixed heights for the objects (e.g., 5.5m for traffic
signal) and compute two projections points for each GIS object, one for its
bottom and another one for its top. This process is shown in figure 1. Figure (a)
shows the position and the view of the camera, in addition to the GIS objects2.
Figure 1 (b) shows the projections, i.e., xi. However, many of the GIS objects
will be occluded by buildings or other GIS objects, so we need an occlusion
handling mechanism to eliminate the occluded GIS objects from our projections
which is described next.

Camera View (b) All Objects (c) Un-occluded Objects(a)

Street Light

Trash Can

Bus Stop

Fire Hydrant

Traffic Signal

Traffic Sign

Fig. 1. The process of acquiring GIS projections for two sample images. Part (a) illus-
trates the camera view (yellow lines) shown in the overhead view with the occlusion
segments (red) and GIS objects. Part (b) shows the projections prior to occlusion han-
dling. Part (c) shows the final projections after occlusion handling along with their
corresponding objects.

2.2 Occlusion Handling

Two main resources of the occlusions are buildings and other GIS objects. GIS
database includes very accurate data about the outline of buildings. Therefore,
we define an occlusion set as the union of the GIS projections and the projections
of the building outlines. We perform the occlusion handling by enforcing that

1 All GPS positions are converted to East-North-Up metric Cartesian coordinates
system for the sake of simplicity.

2 In the entire paper, street lights, trash cans, traffic signal, fire hydrants, bus stops,
and traffic signs are shown with green, purple, red, yellow, cyan and blue markers,
respectively.
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the ray connecting the GIS object to the camera is not blocked by any member
of the occlusion set.3

The non-occluded objects are shown for two samples in figure 1 (c). As appar-
ent in the figure, many GIS projections are found to be occluded which indeed
matches the content of the image.

2.3 Graph Matching

In practice, the GIS projections are rarely at the correct object positions in
the image. That is because even a slight inaccuracy in the metadata or the
employed approximations about the camera rotation parameters (roll and pitch)
may considerably shift the projections from their correct position. This is can
be clearly observed in figure 1 (c). However, the relative geometric relationships
of the objects are yet preserved.

In order to compute a set of potential bounding boxes for the objects in the
image, we perform a content-based detection (in our experiments using DPM
[7,6]). These detections are usually far from perfect and contain a significant
number of false positives due to the complexity of the scene and the nontrivial
appearance of our objects. However, a subset of these DPM detections is ex-
pected to match the projections acquired from GIS. We formulate the problem
of identifying this subset as graph matching.

In graph matching (assume a bipartite graph for the sake of simplicity), two
sets of nodes and a number of edges between the two node sets are given; the
goal is to exclusively assign the nodes of the first set to the nodes of the second
set in a way that an objective function is minimized. Our aim is to assign each
GIS projection to one of the DPM detections in a way that the overall geometry
of the scene is preserved, even though the projections are not necessarily in the
correct locations and the DPM detections include a lot of incorrect bounding
boxes. Thus, we define our problem as a graph matching instance in which the
first set of nodes represents the GIS projections that survived occlusion handling
and the other set represents the DPM detections. Each DPM detection or GIS
projection is represented by one node which is connected to all of the nodes of
the same class in the other set through edges. In other words, each edge denotes
one potential correspondence between a GIS projection and a DPM detection.
Graph matching selects a subset of the edges in a way that the correspondences
they induce best fit a global affine model. This process is illustrated in figure 2.

We assume the geometric model between the projections and the correct
subset of detections can be approximated using an affine transformation. Since
the inaccuracies in the metadata lead to a global transformation in the image,
the projections are often translated, rotated, and scaled. Also, the GIS objects
are often on the ground plane and the images in the urban area usually show
a relatively wide view. Therefore, the affine model, even though not perfect, is

3 Since the GIS projections include more than one pixel, this process is performed for
all of the pixels on the projection, and an object is assumed to be occluded if more
than 50% of its pixels are occluded.
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DPM

GIS Projections

Fused Object Detections

Best AssignmentGraph Matching Input

Fig. 2. An example of the graph matching process. The DPM detections and GIS
projections are used to form a bipartite graph encoding the feasible assignment of
objects. Solving the higher-order graph matching problem yields the best assignment
which has the least cost for fitting an affine transformation. The corresponding object
detection results are shown in the rightmost figure.

a reasonable approximation. In addition, the degree of freedom of affine is less
than its alternatives which is desirable especially for the locations where few GIS
objects are found to be visible in the image.

We solve this graph matching instance using a method based on RANSAC.
The main difference between regular affine fitting and our problem is that, the
preliminary correspondences in regular affine fitting are typically one-to-one,
while in our problem, one GIS projection is preliminarily matched to any of the
detections of the same class and vice versa; however, only one of these corre-
spondences can be included in the final matching. To solve this problem using
RANSAC, we randomly select three correspondences which do not involve as-
signing one node to multiple nodes, and find their corresponding affine model.
Then the number of correspondences which fit this affine transformation are
counted and interpreted as the score of the estimated model; however, if one
node is involved in two inlier correspondences, only one of them is be counted.
This process is repeated until a termination condition (convergence or maximum
number of iterations) is met.

Our graph matching formulation is in fact a higher-order graph matching
problem and not a linear assignment problem, such as bipartite matching. That
is because our objective function, i.e., affine error, can be approximated using
at least three correspondences and not one (unlike linear assignment problems
which assumes a cost/weight is assigned to each correspondence). As an alter-
native to RANSAC for solving our graph matching problem, the recent tensor-
based hypergraph matching techniques [5,26] can sufficiently approximate the
solution in a fraction of a second. However, they allow for local deformations in
the affine model, while employing RANSAC would enforce a global affine model
on the matching correspondences; a global model is favorable for our problem as
we know that the reason behind the misalignment is mainly the imperfect cam-
era parameters (which typically lead to global shifts) and not local deformations
in the objects or scene elements.
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The best assignment found by graph matching is typically represented using
the assignment matrix χ. For the sake of simplicity, assume χ(i) determines the
index of the detection which was matched to the ith GIS projection.

We want to assign a score to each DPM detection in the image which sur-
vived graph matching. This is done using the following equation based on how
well the corresponding GIS projection and DPM detection fit the found affine
transformation:4

SGi = Sig
(
‖A
[
Oi
1

]
−
[
Dχ(i)

1

]
‖
)
, (3)

where A is the best found affine matrix, ‖.‖ denotes Euclidean distance, and
Oi represents the spatial location of the center of the ith GIS projection. Simi-
larly, D represents the spatial locations of the (center of) detections by DPM.
Therefore, Dχ(i) is the spatial location of the DPM detection matched to the

ith GIS projection. Sig is a sigmoid function of the form Sig(x) = 2 1
1+e−σx

with σ = −0.05, which transforms the affine error to a score ranging from 0 to
1. Besides the geometry of the arrangement of objects, we wish to incorporate
the content-based confidence of the detection returned by DPM. This is done
using a linear mixture of the score based on the geometry and the one based
on the content (represented by SI) which is the actual score returned by DPM
normalized to range from 0 to 1:

Si = αSGi + (1− α)SIχ(i), (4)

where α is a linear mixture constant. Therefore, Si denotes an updated score
for object i based on the image content and its geometric consistency with the
GIS. In the experiments section, we will see that the precision-recall curves of
the object detection obtained using this method significantly outperforms DPM
and the other baselines.

3 Geo-Localization using Generic Objects

As discussed earlier, the objects which are visible in the image as well as their
geometric relationship form a discriminative cue for finding the location that
the image was taken at. We propose a method for finding the geo-location of
an image based on the semantic objects therein and their relative geometry.
However, two issues make this process challenging: first, as discussed before,
the object detections found in the image are far from perfect. Second, the GIS
projections are often off the right spatial location. Our method, which is in
fact based on the object detection process described in section 2, is capable of
handling these issues.

4 This could be also applied to all DPM detections, and not only the ones which are
selected by graph matching, by allowing multiple DPM detections to match to one
GIS projection after finding the best affine model using graph matching, or assuming
the geometric score of zero, SG = 0, for the detections which were not selected by
graph matching.
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To find the location of the query image, we perform a search on a dense grid of
geo-locations (20m apart) for the covered area. On each location, we search over
different compass orientations as well (20◦ apart). This dense grid is shown for
a sample covered area in figure 3 (b). We perform the object detection method
described in section 2 on the query image using each of these feasible location-
orientation pairs (i.e., assuming these are the correct location and orientation of
the camera) and obtain the following score for the location-orientation pair:

L = β

|O|∑
i=1

S(i) + (1− β)
∑
c

min(| Oc |, |Dc |)
max(| Oc |, |Dc |)

, (5)

where |.| denotes the size of a set. The parameter β is the linear mixture con-
stant, and c represents the object classes c ∈ {Traffic Signal, Trash Can,...} (e.g.,
DTraffic Signal and OTraffic Signal are the DPM detection and GIS projections of
Traffic Signals for a particular location-orientation). The first term captures how
well the matching subset of DPM detections fits the GIS data of that particular
location (including the spatial geometry of the objects). The second term has an
intersection-over-union form and quantifies the difference between the presence
and absence of the objects in the image compared to the GIS database (no ge-
ometry). If for each GIS projection an inlier detection was found by the graph
matching, the left term yields a high score. On the contrary, if most of the GIS
objects were found to be matching to unreliable detections, this term will give a
lower score. The linear mixture of these two terms is the overall geo-localization
score for a particular location and orientation. We perform this search for all the
grid points with different orientations and rank different location-orientation
pairs based on the score.

0
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Fig. 3. The process of geo-localizing a query image based on the GIS objects in a
sample region. Figure (a) shows the GIS objects in the region. Figure (b) illustrates
the grid geo-locations along with the building outlines. Figure (c) shows the score of
each grid geo-location obtained from equation 5. The ground truth location is marked
with the yellow cross; notice that the grid points near the ground truth obtained a high
score. The points which fall on buildings gain the score of zero.

This method is merely based on semantic objects and can significantly nar-
row down the search space for the location of the query image. We will show
that the combination of the presence/absence of the objects and their geometric
arrangement (i.e., the right and left terms of equation 5) is a distinctive cue for
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finding the right geo-location. This means even though the objects are generic
and can be found in many locations in the city, their geometric relationship
contains distinctive cues about the location.

This process is illustrated in figure 3. The GIS objects and grid geo-locations
are shown for a subregion covered by our GIS database. The score each location
achieves is shown in figure 3 (c). As apparent in the figure, the ground truth
location marked with the yellow cross obtains a higher score compared to the
majority of other locations.

Fire Hydrant Bus Stop  Traffic Sign Traffic Signal Trash Can

GIS Database

Street Lights

Fig. 4. Left: the learned DPM models for our six GIS objects. Right: part of the
coverage of our dataset for Washington, DC. The GIS object are overlaid on the map.

4 Experiments
We performed our evaluations using a GIS database of over 10 square kilometers
area of Washington DC. Figure 4 (right) shows part of the coverage of our dataset
along with the locations of GIS objects. Our GIS database includes accurate
locations of street lights, bus stops, traffic signals, traffic signs, trash cans, and
fire hydrants as well as the building outlines (the color-coding of all markers
and bounding boxes of the objects is specified in the footnote 2). We trained
our DPM detectors (using the code of authors [7,6]) for each object, illustrated
in figure 4 (left), by annotating more than 6000 urban area images downloaded
from Panpramio and Flickr including 420 instances of bus stops, 921 street lights,
1056 traffic signals, 1264 traffic signs, 625 fire hydrants, and 646 trash cans.5 Our
test set includes 223 consumer images downloaded from Panoramio and Flickr.
We set the linear mixure constants, β and α, to 0.5 in our experiments.

4.1 Object Detection Results

Figure 5 illustrates the results of different steps of our framework for the task of
object detection. The first column shows the output of DPM on the images. It can
be observed that there are a notable number of false positives and mis-detections
due to the small size of the objects, poor lighting conditions and partial occlu-
sions in the objects. The second column shows the projections extracted from

5 For the GIS data, training images, annotations, DPM models, and further informa-
tion, please visit http://crcv.ucf.edu/projects/GIS-Object/ .

http://crcv.ucf.edu/projects/GIS-Object/
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the GIS data. As apparent in the figure, the locations of the projections on the
image are not that accurate, while their relative geometry is consistent with the
image content. The output of our method is illustrated in the third column.
Comparing it with the last column (ground truth), the significant improvement
of our method over the DPM and GIS projection results can be observed.

DPM GIS Projections Ours Ground Truth

Fig. 5. Sample object detection results. For each sample, the detections found by DPM
and our method, along with the GIS projections and the ground truth are shown. Our
method significantly improved the results in these challenging urban-area images.

Table 1. Quantitative comparison of the proposed object detection method vs. the
baselines.

DPM GIS Proj. Top DPM Ours

Traffic Sign 0.087 0.002 0.095 0.190
Traffic Signal 0.543 0.027 0.561 0.760
Trash Can 0.043 0.000 0.041 0.125
Fire Hydrant 0.010 0.000 0.012 0.090
Street Light 0.123 0.001 0.129 0.270

mAP 0.1612 0.006 0.1676 0.287

The precision-recall curves of the object detection can be seen in figure 6, in
which the blue curve corresponds to the output of our method. The black curve
shows the accuracy for the projections if we consider them as the detections.
The red curve shows the performance of DPM, and the green curve illustrates
the results of a naive fusion method in which the top k detections of the DPM
model were maintained and the rest were eliminated from the detections (k is the
number of projections of one class which are visible in the image). Table 1 pro-
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vides the quantitative comparison of our method vs. DPM and GIS projections
in terms of mAP which shows the significant improvement by our method.
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Fig. 6. The PR curves of our object detection method and the baselines. The DPM
detector of bus stops yields very poor detection results because of the vast diversity and
complexity of their appearance. Thus, we exclude it from the rest of our experiments.

Impact of the number of object classes: Since our method is leveraging
the geometric relationship among different classes of objects, the more number
of object classes we have, the higher overall accuracy we expect to obtain. Table
2 shows the effect of the number of object classes on the overall accuracy of our
method. “n objects” means we ran our method using all feasible n-class combi-
nations of object classes (i.e.,

(
5
n

)
) and averaged their mAP. It can be observed

that an increase in the number of object classes leads to notable improvement
in the overall results.

Table 2. Effect of the number of object categories.

All Objects Four Obj. Three Obj. Two Obj. One Obj.

mAP 0.28 0.26 0.17 0.12 0.08

Significance of each class: The goal of this experiment is to evaluate the
contribution of each object class in the overall accuracy. For this purpose, the
object detection performance of our method was calculated by excluding one
of the object classes from the process. Table 3 shows how the accuracy would
be affected after neglecting each object. As an example, not incorporating GIS
information about the traffic signals makes the overall object detection accuracy
drop significantly, thus traffic signals have a notable contribution in the overall
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accuracy. That is primarily because they are rarely occluded (similar to street
lights and unlike trash cans and fire hydrants) and have a discriminative shape
which can be detected easily. On the other hand, some objects, such as trash cans
and fire hydrants, have a negative effect on the accuracy due to being frequently
occluded and having a less distinctive appearance.

Table 3. The contribution of each object to the overall object detection results. Some
of the more robust classes, e.g., Traffic signal, have a positive contribution, whereas
the less reliable classes, e.g., trash can, have a negative contribution.

All Objects Street Light Traffic Sign Trash Can Traffic Signal Fire Hydrant

mAP 0.28 0.26 0.26 0.33 0.17 0.29

4.2 Geo-localization Results

For the task of geo-localization, a grid of > 25000 candidate points (20m apart)
was overlaid on the map. However, many of these points were placed on buildings,
so only 4134 candidate points needed to be searched over. Each grid point was
evaluated with 18 different orientations (20◦ apart), and the highest score among
them was then assigned to that particular location.

Figure 8 shows four different localization examples. We use the GPS-tag of
the query image in the Exif tag (after manual verification of the correctness) as
the ground truth. The first column shows the query image and the objects present
in it. The second column shows the objects detected by the DPM, and the last
5 columns show the top 5 location candidates for the image. The ground truth
location, marked with the red boundary, obtains a high score due to the good
matching between the content of the image and the GIS data of the location. The
reason some arbitrary locations may get a high score is the poor object detection
results by DPM. That is because too many missed objects or false positives may
form a random geometric arrangement in the image which matches the GIS
objects of an arbitrary location.

Figure 7 (a) shows the quantitative localization accuracy of our method. We
adopt the popular performance metric in image geo-localization literature [12,25]
which employs a plot with the horizontal axis representing the rank of the ground
truth location in the geo-localization results, and the vertical axis showing the
percentage of test images with the ground truth location within a particular
rank. The red curve in figure 7 (a) was computed by using only the information
about the presence/absence of the objects in the image (i.e., the right term in
equation 5). It can be observed that leveraging the geometric relationship leads
to higher accuracy shown using the red curves.

Impact of number of object classes: Similar to the experiments for object
detection, we evaluated the localization results using fewer number of objects.
Figure 7 (b) shows that, generally, utilizing more object classes leads to more
accurate localization, as a results of incorporating more information.
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Fig. 7. Quantitative geo-localization results. Figure (a) shows the overall results (blue)
along with the results obtained using only the presence/absence of objects (i.e., the left
term in equation 5). Figure (b) illustrates the impact of the number of incorporated
object classes. Figure (c) details the contribution of each object class.

Significance of different classes: Similar to the experiment for object detec-
tion, we evaluated the importance of each object class in geo-localization. Figure
7 (c) shows localization results by excluding one of the object classes from the
process; the amount of drop in the overall accuracy is indicative of the positive
contribution of that particular class in the geo-localization results). Again, as
shown in table 3, reliable objects, such as traffic signals, are confirmed to have
a larger positive contribution in the localization results.

Failure Analysis: The root of the majority of the failure cases of our frame-
work, for both object detection and geo-localization, is not being able to find the
correct corresponding object bounding box among the DPM detections. In gen-
eral, there are 3 main reasons for that: having no DPM detection for an object,
misalignment by graph matching, and the inaccuracies of the GIS data (missing
or misplaced objects). An experiment on a subset of our data showed the afore-
mentioned reasons caused 25%, 41.6% and 33.4% of failures cases, respectively.

5 Conclusion

We proposed a method for improving object detection using a set of priors
acquired from GIS databases. Given a database of object locations and a query
image with metadata, we projected the GIS objects onto the image and fused
them with candidate object detections acquired from DPM. In order to handle
various inaccuracies and practical difficulties, we formulate our fusion as a higher-
order graph matching problem which we robustly solved using RANSAC.

Furthermore, we proposed that the GIS objects can be used for discovering
the GPS location from where an image was taken at. For this purpose, we per-
formed a search on a dense grid of locations over the covered area and assigned a
score to each geo-location quantifying the similarity between its GIS information
and the image content based on the objects visible therein. We showed that this
intuitive and semantic approach can significantly narrow down the search space,
and sometimes, even find the correct GPS location.
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Fig. 8. Sample geo-localization results for four query images from Panoramio and
Flickr. The images corresponding to the five best matching locations as well as the
DPM detections and the ground truth objects are shown. The image corresponding
to the correct location (i.e., the grid point within 20m of the ground truth GPS loca-
tion.) is marked with the red boundary. As apparent in the figure, the correct location
is among the best matching geo-locations as a results of the similarity between the
objects visible in the image and the GIS database of the ground truth location.
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